Logout successfull!


1. Faye PA, Roualdes O, Rossignol F, Hartmann DJ, Desmoulière A. Engulfment of ceramic particles by fibroblasts does not alter cell behavior. Biomed Mater. 2017;12(1):015023. doi: 10.1088/1748-605X/aa5aa2. 

2. Cunningham BW, Hallab NJ, Hu N, McAfee PC. Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model. J. Neurosurg. Spine. 2013;19(3):336-350. doi:10.3171/2013.5.SPINE13166. 

3. Savarino L, Baldini N, Ciapetti G, Pellacani A, Giunti A. Is wear debris responsible for failure in alumina-on-alumina implants? Acta Orthop. 2009;80(2):162-167. doi:10.3109/17453670902876730. 

4. Asif IM, Williams S, Fisher J, Al-Hajjar M, Anderson J, Tipper JL. Characterisation and biocompatibility of composite ceramic particles used to manufacture ceramic-on-ceramic total hip replacements. Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress.  doi:10.3389/conf.FBIOE.2016.01.00793. 

5. Asif I M. Characterisation and biological impact of wear particles from composite ceramic hip replacements.[PhD thesis]. Leeds, UK: University of Leeds; 2018. etheses.whiterose.ac.uk/20563/.

6. Krenn V, Thomas P, Thomsen M, et al. Histopathological Particle Identification (The Krenn Particle Algorithm). CeraNews 2013;2:12-17. 

7. Grupp TM, Holderied M, Mulliez MA, et al. Biotribology of a vitamin E-stabilized polyethylene for hip arthroplasty – Influence of artificial ageing and third-body particles on wear. Acta Biomater. 2014;10:3068-3078. doi:10.1016/j.actbio.2014.02.052. 

8. van Loon J, Hoornenborg D, van der Vis HM, et al. Ceramic-on-ceramic vs ceramic-on-polyethylene, a comparative study with 10-year follow-up. World J Orthop. 2021;12(1):14-23. doi: 10.5312/wjo.v12.i1.14.

9. Feng B, Ren Y, Cao S, et al. Comparison of ceramic-on-ceramic bearing vs ceramic-on-highly cross-linked polyethylene-bearing surfaces in total hip arthroplasty for avascular necrosis of femoral head: a prospective cohort study with a mid-term follow-up. Journal of orthopaedic surgery and research. 2019;14(1):388-394. doi:10.1186/s13018-019-1410-8.

10. Trampuz A, Maiolo EM, Winkler T, Perka C. Biofilm formation on ceramic, metal and polyethylene bearing components from hip joint replacement systems. Orthopaedic Proceedings. 2016;98-B(SUPP 10):80-80. doi:10.1302/1358-992X.98BSUPP_10.ISTA2015-080. 

11. Sorrentino R, Cochis A, Azzimonti B, et al. Reduced bacterial adhesion on ceramics used for arthroplasty applications.J Eur Ceram Soc. 2018;38(3):963-970. doi:10.1016/j.jeurceramsoc.2017.10.008.

12. Thomas P, Stea S. Metal implant allergy and immuno-allergological compatibility aspects of ceramic materials. Heidelberg, Germany: Springer-Verlag Berlin Heidelberg; 2015.

13. Kretzer JP, Mueller U, Streit MR, et al. Ion release in ceramic bearings for total hip replacement: Results from an in vitro and an in vivo study. Int Orthop. 2018;42(1):65-70. doi:10.1007/s00264-017-3568-1.  

14. Piconi C, Porporati AA, Streicher RM. Ceramics in THR bearings: behavior under off-normal conditions. Key Eng Mat. 2014;631:3-7. doi:10.4028/www.scientific.net/KEM.631.3.

15. Lee R, Essner A, Wang A, Jaffe WL. Scratch and wear performance of prosthetic femoral head components against crosslinked UHMWPE sockets. Wear. 2009;267(11):1915-1921. doi:10.1016/j.wear.2009.03.034.

16. De Fine M, Terrando S, Hintner M, Porporati AA, Pignatti G. Pushing Ceramic-on-Ceramic in the most extreme wear conditions: A hip simulator study. Orthop Traumatol Surg Res. 2020:S1877-0568(20)30184-5. doi:10.1016/j.otsr.2020.05.003.

17. Caravaca C, Porporati AA, Streicher R. Wettability of bearing couples: how to prepare the surfaces. Bone & Joint Journal Orthopaedic Proceedings. 2016;98-B(SUPP 7):67.

18. Affatato S, Ruggiero A. Biotribology in arthroplasty: worn surfaces investigation on ceramic hip femoral heads considering wettability. Applied Sciences. 2020;10(24):8919. doi:10.3390/app10248919.